
Section 4
Sequential Logic

Administrivia
● Lab 4: Report due next Wednesday (2/4) @ 2:30 pm,

demo by last OH on Friday (2/6), but expected during your assigned slot.

● Lab 5: Report due 2/11, demo by last OH on 2/13.
○ ⚠ This lab is a LOT harder than previous labs ⚠

● Quiz 1: Tuesday (2/3) at end of Lecture.
○ Very formulaic: gates, DeMorgan’s, K-map, waveforms, test benches.
○ Study from past quizzes on course website!

Parameters

New SystemVerilog Commands
● parameter – create a symbolic constant for a value that can be

referenced in scope.
○ Like #define in C/C++.
○ Useful for things like timing constants, state names, module widths.

New SystemVerilog Commands
● parameter – create a symbolic constant for a value that can be

referenced in scope.
○ Like #define in C/C++.
○ Useful for things like timing constants, state names, module widths.

● Parameterized modules:
○ Definition: module <name> #(<param list>) (<port list>);

■ <param list> is comma-separated and can include default values
(e.g., #(M, N=4)).

○ Instantiation: <name> #(<params>) <inst_name> (<ports>);
■ Notice that parameter definitions are to the left of the instance name!
■ Generates different versions of the same module definition (like templates in C++).

● (1) Parameterize the comparator module for bit-width N:
○ Hint: you will need to use a reduction operator (e.g., ~&A), which will reduce all

the bits of a vector into a single value using the specified Boolean operator.

● (2) Parameterize the guessing_game module for bit-width N and secret
number S:

Exercise 1

// Implements an N-bit comparator circuit
module comparator (A, B, is_lt, is_eq, is_gt);

// Game to check user's N-bit input guess against a secret #
module guessing_game (LEDR, KEY, SW);

https://nandland.com/reduction-operators/

● Changes underlined and shown in red:

Exercise 1 (Solution)

module comparator #(N = 3)
 (input logic [N-1:0] A, B,
 output logic is_lt, is_gt, is_eq);

 // subtraction result (intermediate)
 logic [N-1:0] sub;
 assign sub = A - B;

 assign is_eq = ~|sub;
 assign is_lt = sub[N-1];
 assign is_gt = ~is_eq & ~is_lt;

endmodule // comparator

● Changes underlined and shown in red:

module guessing_game #(N=3, S=3'd1)
 (output logic [9:0] LEDR,
 input logic [3:0] KEY, input logic [9:0] SW);

 logic is_lt, is_eq, is_gt;

 comparator #(.N(N)) number_comparator (
 .A(SW[N-1:0]), .B(S), .is_lt, .is_eq, .is_gt
);

 ... // LEDR assignments (unchanged)

endmodule // guessing_game

Exercise 1 (Solution)

Sequential Logic

New SystemVerilog Commands
● always_ff – higher-level description of behavior that includes sequential

logic.
○ Requires an explicit sensitivity/trigger list (e.g., @(posedge clk)) that dictates

when the code block will take effect.

● Non-blocking statements (<=) should be used with always_ff, blocking
statements (=) should be used with assign and always_comb.

Flip-Flops and Registers (Review)

● A flip-flop samples d on triggers and transfers its value to q.

● A register is a collection of N flip-flops together.

module basic_D_FF (output logic q, input logic d, clk);
 always_ff @(posedge clk)

q <= d;
endmodule // basic_D_FF

module basic_reg #(N) (output logic [N-1:0] Q,
 input logic [N-1:0] D,
 input logic clk);
 always_ff @(posedge clk)

Q <= D;
endmodule // basic_reg

Reset Functionality (Review)

● A sequential element often has a reset signal that will drive its output to a
known value.
○ Useful in hardware to substitute for “initialization.”
○ Two options, synchronous (left) or asynchronous (right):

module D_FF1 (output logic q,
 input logic d, reset, clk);
 always_ff @(posedge clk)
 if (reset)
 q <= 0;
 else
 q <= d;
endmodule // D_FF1

module D_FF2 (output logic q,
 input logic d, reset, clk);
 always_ff @(posedge clk or posedge reset)
 if (reset)
 q <= 0;
 else
 q <= d;
endmodule // D_FF2

Clock in Hardware
● We will use the DE1-SoC’s built-in 50 MHz clock called CLOCK_50.

○ Accessed by adding CLOCK_50 as an input logic to your top-level module.

● Because 50 MHz (i.e., clock period = 20 ns) may be too fast for humans,
can use provided clock_divider module to slow things down.
○ Recommendation: assign extra signal clk to divided_clocks[#].
○ Make sure to comment out clock_divider for simulation!

logic [31:0] divided_clocks;
logic clk;
clock_divider cdiv (.clock(CLOCK_50), .divided_clocks);
assign clk = divided_clocks[23]; // replace with = CLOCK_50 for simulation
// Instantiating a module that is using clock 23
<module_name> <instance_name> (.clk, .reset, ...);

Exercise 2
● Write a module called string_lights that implements the system

shown below (a string of 10 flip-flops/1-bit registers tied to the LEDRs) for
the DE1-SoC.
○ Use SW[9] as the reset, SW[0] as In, and ~KEY[0] as clk.

■ Since we are using a KEY for the clock, no need for clock_divider.

○ Hint: flip-flops can be module instances or inferred from an always_ff block.

Exercise 2 (Solution)
● Version 1: module instances

○ Connections made via ports.

module string_lights (output logic [9:0] LEDR,
 input logic [3:0] KEY,
 input logic [9:0] SW);
 logic clk, reset, in;
 assign clk = ~KEY[0];
 assign reset = SW[9];
 assign in = SW[0];

 D_FF1 ff9 (.q(LEDR[9]), .d(in), .reset, .clk);
 D_FF1 ff8 (.q(LEDR[8]), .d(LEDR[9]), .reset, .clk);
 ...
 D_FF1 ff1 (.q(LEDR[1]), .d(LEDR[2]), .reset, .clk);
 D_FF1 ff0 (.q(LEDR[0]), .d(LEDR[1]), .reset, .clk);

endmodule // string_lights

Exercise 2 (Solution)
● Version 2: always_ff

○ Connections made via non-blocking assignments.

module string_lights (output logic [9:0] LEDR,
 input logic [3:0] KEY,
 input logic [9:0] SW);
 logic clk, reset, in;
 assign clk = ~KEY[0];
 assign reset = SW[9];
 assign in = SW[0];

 always_ff @(posedge clk)
 if (reset)
 LEDR <= 10'd0;
 else
 LEDR <= {in, LEDR[9:1]};

endmodule // string_lights

Exercise 2 Demo (If Time)
● Compile and run string_lights on a DE1-SoC.

○ Normally, you should ALWAYS run simulations first.

Sequential Logic Test Benches

Clock Generation (Review)
● In simulation, need to create a clock signal yourself (steady square wave).

○ Just pick your favorite form and copy-and-paste into your future test benches.
○ Exact period doesn’t really matter since it’s all arbitrary time units.

parameter T = 100; // period
initial
 clk = 0;
always begin
 #(T/2) clk <= 1;
 #(T/2) clk <= 0;
end

parameter T = 100; // period
initial
 clk = 0;
always
 #(T/2) clk <= ~clk;

Explicit Edges: Toggle:

Edge-Sensitive Delays
● Delays until specified transition on signal: @(<pos/negedge> signal);

○ Allows us to wait for the next clock trigger in our simulation since that’s when
sequential elements will update.

● Example test bench block:

initial begin
 d <= 1'b1; reset <= 1'b1; @(posedge clk); // reset
 reset <= 1'b0; @(posedge clk); // store 1
 @(posedge clk); // hold 1
 d <= 1'b0; @(posedge clk); // store 0
 @(posedge clk); // hold 0
 $stop();
end

Sequential Test Bench Notes
● Need to manually track the expected state for sequential elements.

● Always define ALL of your inputs at t=0, even if you’re resetting, to
eliminate unnecessary red lines in simulation.

● Whitespace in initial block doesn’t matter but we recommend being
consistent (i.e., line up your delays on right or left side of each line).

● All logic delays set to 0 in our ModelSim setup, so be careful with
interpreting signal changes.

● Include an extra delay at the end to see the effects of your last input
changes.

1 UNTIL clock trigger

changes to 0
right AFTER
clock trigger

Exercise 3
● Create a test bench for string_lights and simulate it in ModelSim.

○ Do we need this test bench to be thorough? What would be enough to
convince you that it is working properly?

○ What do you think the best combination of signals (and radices) are to use for
the reader of your simulation?
■ e.g., do you want to show the top-level SW[9] signal or an internal reset

signal?

Exercise 3 (Solution)
● Create Module , create ports, instantiate dut

module string_lights_tb ();
 logic [9:0] LEDR;
 logic [3:0] KEY;
 logic [9:0] SW;

 string_lights dut (.*);

endmodule // string_lights_tb

Exercise 3 (Solution)
● Setup clock – since KEY[0] is active-low, need to start with 1 instead of 0.

module string_lights_tb ();
 ... // signal declarations and dut instantiation

 parameter T = 100;
 initial
 KEY[0] = 1'b1;
 always begin
 #(T/2) KEY[0] <= 1'b0;
 #(T/2) KEY[0] <= 1'b1;
 end

endmodule // string_lights_tb

Exercise 3 (Solution)
● Define initial block and add $stop system task.

○ Make sure to initialize all inputs at t = 0!

module string_lights_tb ();
 ... // signal declarations and dut instantiation
 ... // clock generation

 initial begin
 SW[0] <= 1'b0; SW[9] <= 1'b1; @(negedge KEY[0]); // reset

 $stop;
 end

endmodule // string_lights_tb

● We can now start simulating some possible behaviors of our design!
○ e.g., let’s try the input sequence 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1

Exercise 3 (Solution)

module string_lights_tb ();
 ... // signal declarations and dut instantiation
 ... // clock generation

 initial begin
 SW[0] <= 1'b0; SW[9] <= 1'b1; @(negedge KEY[0]); // reset
 SW[0] <= 1'b0; SW[9] <= 1'b0; @(negedge KEY[0]); // 0
 SW[0] <= 1'b1; @(negedge KEY[0]); // 1
 ... // finish desired pattern
 @(negedge KEY[0]); // final delay
 $stop;
 end
endmodule // string_lights_tb

Exercise 3 (Solution)
● Simulation results verify (1) reset works, (2) inputs travel across entire

string, and (3) a variety of combinations of inputs.
○ Using internal signal names for readability.

Exercise 3 (Solution)
● Simulation results verify (1) reset works, (2) inputs travel across entire

string, and (3) a variety of combinations of inputs.
○ Using internal signal names for readability.

● Many other behaviors are possible and should be tested!
○ The idea here is not necessarily to test out all possibilities like in combinational

logic but enough relevant scenarios to give you confidence that it is working
properly.

