Section 4

Sequential Logic

Administrivia

e Lab 4: Report due next Wednesday (2/4) @ 2:30 pm,
demo by last OH on Friday (2/6), but expected during your assigned slot.

e Lab 5: Reportdue 2/11, demo by last OH on 2/13.
o /\ This lab is a LOT harder than previous labs A\ EEESSS s -

e Quiz1: Tuesday (2/3) at end of Lecture T —————
/

©)

©)

Parameters

New SystemVerilog Commands

e parameter - create a symbolic constant for a value that can be

referenced in scope.
o Like #definein C/C++.
o Useful for things like timing constants, state names, module widths.

New SystemVerilog Commands

e parameter - create a symbolic constant for a value that can be

referenced in scope.
o Like #definein C/C++.
o Useful for things like timing constants, state names, module widths.

e Parameterized modules:

o Definition: module <name> #(<param list>) (<port list>);
m <param Llist> is comma-separated/and can include defaultjvalues
(e.g., #(M, N=4)).
o Instantiation: <name> #(<params>) <inst_name> (<ports>);
m Notice that parameter definitions are to the /eft of the instance name!
m Generates different versions of the same module definition (like templates in C++).

Exercise 1

e (1)Parameterize the comparator module for bit-width N:
o Hint: you will need to use a reduction operator (e.g., ~&A), which will reduce all
the bits of a vector into a single value using the specified Boolean operator.

// Implements an N-bit comparator circuit
module comparator (A, B, is_1lt, is_eq, is_gt);

e (2) Parameterize the guessing_game module for bit-width N and secret
number S:

// Game to check user's N-bit input guess against a secret #
module guessing_game (LEDR, KEY, SW);

https://nandland.com/reduction-operators/

Exercise 1 (Solution)

e Changes underlined and shown in red:

module comparator #(N = 3
(input 1logic [N-1:0] A, B,
output logic is_1lt, is_gt, is_eq);

// subtraction result (intermediate)
logic [N-1:0] sub;
assign sub = A - B;

assign is_eq = ~|sub;
assign is_1lt = sub[N-17;
assign is_gt = ~is_eq & ~is_1t;

endmodule // comparator

Exercise 1 (Solution)

e Changes underlined and shown in red:

module guessing_game #(N=3, S=3'dl)
(output logic [9:0] LEDR,
input logic [3:0] KEY, input Tlogic [9:0] SW);

logic is_lt, is_eq, is_gt;
comparator #(.N(N)) number_comparator (
LA(SW[IN=1:0]), .B(S), .is_lt, .is_eq, .is_gt
)
// LEDR assignments (unchanged)

endmodule // guessing_game

Sequential Logic

New SystemVerilog Commands

e always_ff - higher-level description of behavior that includes sequential
logic.
o Requires an explicit sensitivity/trigger list (e.g., @ (posedge clk)) that dictates
when the code block will take effect.

e Non-blocking statements (<=) should be used with always_ff, blocking
statements (=) should be used with assign and always_comb.

Flip-Flops and Registers (Review)

o A flip-flop samples d on triggers and transfers its value to q.

module basic_D_FF (output logic q, input logic d, clk);
always_ff @(posedge clk) CLK - Q
endmodule // basic_D_FF D="1Den?

e Aregister is a collection of N flip-flops together.

module basic_reg #(N) (output logic [N-1:0] Q,

input logic [N-1:0] D,
input logic clk); D gl Q
always_ff @(posedge clk) eno
Q <= D; CLK

endmodule // basic_reg

Reset Functionality (Review)

e A sequential element often has a reset signal that will drive its output to a

known value.
o Useful in hardware to substitute for “initialization.”
o Two options, synchronous (left) or asynchronous (right):

module D_FF1l (output logic q, module D_FF2 (output logic q,
input logic d, reset, clk); input logic d, reset, clk);
always_ff @(posedge clk) always_ff @(posedge clk or posedge reset)
if (reset) if (reset)
q <= 0; q <= 0;
else else
q <= dj q <= dj
endmodule // D_FF1 endmodule // D_FF2

Clock in Hardware

e We will use the DE1-SoC's built-in 50 MHz clock called CLOCK_560.
o Accessed by adding CLOCK_50 as an input logic to your top-level module.

e Because 50 MHz (i.e., clock period = 20 ns) may be too fast for humans,

can use provided clock_divider module to slow things down.
o Recommendation: assign extra signal clk to divided_clocks[#].
o Make sure to comment out clock_divider for simulation!

logic [31:0] divided_clocks;

logic clk;

clock_divider cdiv (.clock(CLOCK_50), .divided_clocks);

assign clk = divided_clocks[23]; // replace with = CLOCK_50 for simulation
// Instantiating a module that is using clock 23

<module_name> <instance_name> (.clk, .reset, ...);

Exercise 2

e \Write a module called string_T1lights that implements the system
shown below (a string of 10 flip-flops/1-bit registers tied to the LEDRs) for

the DE1-SoC.

o Use SW[9] as the reset, SW[0] as In, and ~KEY[0] as clk.
m Since we are using a KEY for the clock, no need for clock_divider.

o Hint: flip-flops can be module instances or inferred from an always_ff block.

LEDR[9] LEDR[8] LEDR[7] LEDR[6] LEDR[5] LEDR[4] LEDR[3] LEDR[2] LEDR[1] LEDRI[0]

© e @ @@ e e e re

1 0 0 0 1 0 0 1 0 0
In|@® D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q

clkjd?

Exercise 2 (Solution)

e Version 1: module instances
o Connections made via ports.

module string_lights (output logic [9:0] LEDR,
input Tlogic [3:0] KEY,
input Tlogic [9:0] SW);

logic clk, reset, 1in;

assign clk = ~KEY[0];

assign reset = SW[9];

assign 1in = SW[O];

D_FF1 ff9 (.q(LEDR[9]), .d(in), .reset, .clk);

D_FF1 ff8 (.q(LEDR[8]), .d(LEDR[9]), .reset, .clk);

D_FF1 ff1 (.q(LEDR[1]), .d(LEDR[2]), .reset, .clk);
D_FF1 ffe (.q(LEDR[®]), .d(LEDR[1]), .reset, .clk);

endmodule // string_lights

Exercise 2 (Solution)

e Version 2: always_ff
o Connections made via non-blocking assignments.

module string_lights (output logic [9:0] LEDR,
input Tlogic [3:0] KEY,
input Tlogic [9:0] SW);

logic clk, reset, 1in;

assign clk = ~KEY[0];
assign reset = SW[9];
assign 1in = SW[O];

always_ff @(posedge clk)
if (reset)
LEDR <= 10'd0;
else
LEDR <= {in, LEDR[9:1]};

endmodule // string_lights
T e

Exercise 2 Demo (If Time)

e Compileandrunstring_lights ona DET1-SoC.
o Normally, you should ALWAYS run simulations first.

Sequential Logic Test Benches

Clock Generation (Review)

In simulation, need to create a clock signal yourself (steady square wave).
o Just pick your favorite form and copy-and-paste into your future test benches.

o Exact period doesn't really matter since it's all arbitrary time units.

Explicit Edges:

parameter T = 100;
initial

clk = 0;

always begin
#(T/2) clk <= 1;
#(T/2) clk <= 0;

end

// period

Toggle:

parameter T = 100;

initial
clk = 0;

always
#(T/2)

// period

clk <= ~clk;

Edge-Sensitive Delays

e Delays until specified transition on signal: @(<pos/negedge> signal);
o Allows us to wait for the next clock trigger in our simulation since that's when
sequential elements will update.

e Example test bench block:

initial begin
d <= 1'bl; reset <= 1'bl; @(posedge clk); // reset
reset <= 1'b0; @(posedge clk); // store 1
@(posedge clk); // hold 1
d <= 1'b0; @(posedge clk); // store 0
@(posedge clk); // hold 0

$stop();
end

Sequential Test Bench Notes

e Need to manually track the expected state for sequential elements.

e Always define ALL of your inputs at t=0, even if you're resetting, to
eliminate unnecessary red lines in simulation.

e Whitespace in initial block doesn't matter but we recommend being
consistent (i.e., line up your delays on right or left side of each line).

e Alllogic delays set to 0 in our ModelSim setup, so be careful with

interpreting signal changes. FELEERIEEEIGVE changes to 0
“ |D_FF testbench/reset right AETER
1 UNTIL clock trigger clock trigger
e Include an extra delay at the end to see the effects of your last input

changes.

Exercise 3

e C(Create atest bench for string_1lights and simulate it in ModelSim.

o Do we need this test bench to be thorough? What would be enough to
convince you that it is working properly?

o What do you think the best combination of signals (and radices) are to use for

the reader of your simulation?
m e.g,doyouwantto show the top-level SW[9] signal or an internal reset

signal?

Exercise 3 (Solution)

e (reate Module, create ports, instantiate dut

module string_lights_tb ();
logic [9:0] LEDR;
logic [3:0] KEY;
logic [9:0] SW;

string_lights dut (.x);

endmodule // string_lights_tb
e

Exercise 3 (Solution)

e Setup clock - since KEY[0] is active-low, need to start with 1 instead of ©.

module string_lights_tb ();
// signal declarations and dut instantiation

parameter T = 100;
initial
KEY[O] = 1'bl;
always begin
#(T/2) KEY[0O] <= 1'b0O;
#(T/2) KEY[0O] <= 1'bl;
end

endmodule // string_lights_tb
I

Exercise 3 (Solution)

e Defineinitial block and add $stop system task.
o Make sure to initialize all inputs at t = 0!

module string_lights_tb ();
// signal declarations and dut instantiation
// clock generation

initial begin
SW[O] <= 1'b0Oj; SW[9] <= 1'bl; @(negedge KEY[0O]); // reset

$stop;
end

endmodule // string_lights_tb
I

Exercise 3 (Solution)

e We can now start simulating some possible behaviors of our design!
o eg., let'strytheinputsequence0,1,0,0,1,1,0,0,0,1,1,1

module string_lights_tb ();
// signal declarations and dut instantiation
// clock generation

initial begin
SW[O] <= 1'b0; SW[9] <= 1'bl; @(negedge KEY[0O]); // reset
SWLO] <= 1'b0; SW[9] <= 1'b0; @(negedge KEY[O]); // O
SW[O] <= 1'bl; @(negedge KEY[0]); // 1
// finish desired pattern
@(negedge KEY[0]); // final delay
$stop;
end
endmodule // string_lights_tb

Exercise 5 (Solution)

e Simulation results verify (1) reset works, (2) inputs travel across entire

string, and (3) a variety of combinations of inputs.

o Using internal signal names for readability.
£&| Wave - Default + £ x|

Jstring_lights_tb/dut/ck
“ [string_lights_tb/dutfreset

+ ing_li _|
b e et Bod
LR L L L L L L O A L L
5) 500 ;v> 1000 ps 1100 ps 1200 ;:-:- 300 ps 1400 ps 1500 ps
Cursor 1 799 ps
i

L wE

Exercise 3 (Solution)

e Simulation results verify (1) reset works, (2) inputs travel across entire

string, and (3) a variety of combinations of inputs.
o Using internal signal names for readability.

e Many other behaviors are possible and should be tested!
o The idea here is not necessarily to test out all possibilities like in combinational
logic but enough relevant scenarios to give you confidence that it is working

properly.

